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ABSTRACT: Two alternative approaches to the description of thunderstorms in models of the global
electric circuit (GEC) are considered, one treating thunderstorms as current sources, and the other, as voltage
sources; it is shown that the two approaches are equally convenient in simple equivalent circuit models of
the GEC, but in more realistic continuous three-dimensional spherical models the current-source approach
proves more natural and useful. Within the current-source approach a number of simple model problems
are analysed so as to illustrate the effect of conductivity inhomogeneities on the ionospheric potential; it is
shown that taking account of the conductivity reduction inside thunderclouds leads to a substantial increase
in the ionospheric potential, while the increase of conductivity above thunderstorms does not lead to a
significant change in the ionospheric potential. The two approaches to the description of generators of
the GEC are compared from the perspective of the ionospheric potential variation due to the increase of
conductivity in the upper atmosphere; it is shown that the two parameterisations of thunderstorms yield
qualitatively different results.

INTRODUCTION

Much attention has been given over the years to different approaches to modelling the global electric
circuit (GEC) and particularly to the influence of conductivity inhomogeneities on its characteristics [Zhou
and Tinsley, 2010; Rycroft and Harrison, 2012; Williams and Mareev, 2014]. Notwithstanding that most
existing models of the GEC are based on the same equations of electrodynamics, the problem of parameter-
ising generators of the GEC is still important and open to discussion. Historically, two different approaches
to this issue have been widely used. Within one of these approaches thunderstorms are regarded as current
sources [e.g., Volland, 1984], and within the other, as voltage sources [e.g., Markson, 1978]. Although there
are certain reasons in favour of both methods of description [Willett, 1979], in most cases the current-source
approach seems to be a more natural framework for representing thunderclouds.

In this paper we compare the two approaches to the description of thunderstorms and discuss some
model problems concerning the influence of large-scale conductivity inhomogeneities on the ionospheric
potential.

TWO APPROACHES TO THE DESCRIPTION OF THUNDERSTORM GENERATORS

In order to compare different approaches to the description of thunderstorm generators and to study
the impact of conductivity inhomogeneities on the ionospheric potential, we will use two models of the
GEC. One of them is a spherical model based on Maxwell’s equations in a continuous medium, and the
other is a simple multi-column model in which the GEC is replaced by the equivalent circuit consisting of
resistors and current or voltage sources.
∗Corresponding author, email: evgeny.mareev@gmail.com, Postal address: Institute of Applied Physics RAS, 46 Ulyanova St.,

603950 Nizhny Novgorod, Russia.
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In early studies of atmospheric electricity generators of the GEC were often described as point current
sources [Kasemir, 1959; Hays and Roble, 1979; Willett, 1979]. Although such an approximation often yields
realistic conclusions, the real thunderstorms are distributed rather than localised, and therefore continuous
description of generators seems more appropriate. The current-source description of thunderstorms can be
easily made continuous by employing the notion of the external current density Jext, which enters into
Ohm’s law

J = σE + Jext, (1)

where J is the current density, E is the electric field and σ stands for the conductivity.
The spherical model of the GEC which we use here was developed by Kalinin et al. [2014]. The

atmosphere is represented by a shell confined between the Earth’s surface r = rmin and the lower boundary
of the ionosphere r = rmax (here (r, θ, ψ) are spherical coordinates whose origin coincides with the centre
of the Earth). The equations governing the spatial distribution of the electric potential φ(r, θ, ψ) read as
follows:

div (σ gradφ) = div Jext, (2)∮
r=rmin

(σ gradφ) dS =

∮
r=rmin

Jext dS, (3)

φ|r=rmin
= 0, φ|r=rmax

= Vi, (4)

where Vi stands for the ionospheric potential. These equations precisely correspond to the general Maxwell’s
equations for the electric and magnetic fields in the atmosphere together with the relation (1). One of the
most important aspects of these equations is that the ionospheric potential is not explicitly specified but is
uniquely determined from the solution φ(r, θ, ψ). It was shown that the problem (2)–(4) is well-posed, and
once σ(r, θ, ψ) and Jext(r, θ, ψ) are known, the potential distribution can be calculated numerically by
means of the Galerkin method.

Simple multi-column models of the GEC based on the concept of the equivalent circuit are another
convenient tool to compare different approaches to the description of thunderstorms. In such models the
entire atmosphere is divided into two or more columns, some corresponding to thunderstorm regions, where
the current flows upwards, and others corresponding to fair weather regions, where the current flows down-
wards. Then different regions are replaced by equivalent resistors and current or voltage sources, and thus the
real atmospheric electric system is replaced by an equivalent circuit [Markson, 1978; Makino and Ogawa,
1984; Odzimek et al., 2010]. Once the characteristics of these resistors and current or voltage sources are
known, all the currents and voltages in the circuit (including the ionospheric potential) can be calculated us-
ing Kirchhoff’s laws. The simplest example of such a model is shown in Fig. 1; there are only two columns
in it, one of which contains all thunderstorms and the other contains all the fair-weather regions.

It can be shown that multi-column models of the GEC and their corresponding equivalent circuit
models can be regarded as special cases of the general spherical model described above. More precisely, if
the atmosphere is divided into several columns such that the conductivity and the external current density in
each of these columns are functions of r alone and besides only the radial component of the external current
density is non-zero, then the corresponding multi-column model turns out to be an approximation of the
spherical model in which the currents flowing through the side surfaces of these columns are neglected (in
other words, what is neglected are the derivatives with respect to θ and ψ in the equation (2) within each
column).

Although equivalent circuit models are simple and convenient, they are not very useful for quantitative
estimates. The comparison of the ‘exact’ potential distribution found by numerical solution of (2)–(4) and
its approximation found from the corresponding equivalent circuit model shows that there is a substantial
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Figure 1: (a) The electric circuit equivalent to a two-column model of the GEC within the current-source approach.
(b) The electric circuit equivalent to a two-column model of the GEC within the voltage-source approach.

difference between the two results, provided that the total area of the side surfaces of the columns into which
the atmosphere is divided is large enough. More precisely, equivalent circuit models cannot distinguish be-
tween a number of separate identical thundercloud columns and all these columns combined together into
a single column (as shown in Fig. 1). Therefore such models yield the same value of the ionospheric po-
tential for a single large thundercloud and for a number of small ones with the same parameters and total
area. However, numerical simulation shows that the current through the side surface of each column can
be neglected only if the characteristic ‘horizontal’ scale of this column is much greater than the character-
istic vertical scale of the atmosphere, rmax − rmin, and whereas this condition is fulfilled in the case of a
single large thundercloud, it is not satisfied in the more realistic case of small thunderclouds. Therefore
in most cases the equivalent circuit approach is unsuitable for quantitative analysis. Nevertheless, it yields
many qualitatively correct results; for example, it explains the mechanisms by which various conductivity
inhomogeneities affect the ionospheric potential.

In equivalent circuit models the current-source and voltage-source approaches are equally convenient.
Since the external current inside a thundercloud and the voltage between its top and bottom are related,
the main question is which quantity should be kept constant when we study the influence of conductivity
variations on the GEC. Let us illustrate this situation by the example shown in Fig. 1. Denoting the current
in the circuit by I and the voltage across the current or voltage source by E , we get two expressions for the
ionospheric potential:

Vi = E − I (R1 +R3) = I (R4 +R5 +R6), (5)

whence, eliminating I , we arrive at the formula

Vi =
E

R1 +R3

/(
1

R1 +R3
+

1

R4 +R5 +R6

)
. (6)

This formula describes the ionospheric potential in terms of E and the resistances R1, R2, . . . , R6 within the
voltage-source approach. In order to obtain its counterpart within the current-source approach, we should
express E in terms of Iext,

E =
(
Iext − I

)
R2, (7)
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and then eliminate E and I from (5) and (7); the resulting formula is

Vi =
IextR2

R1 +R2 +R3

/(
1

R1 +R2 +R3
+

1

R4 +R5 +R6

)
. (8)

Note that Iext and E are related through (6) and (8). Given the external current Iext, we can always find
the corresponding voltage E , and vice versa. However, the two approaches differ as to which quantity is
independent of the resistances, Iext or E . As the conductivity varies, the resistances change; on the contrary,
Iext within the current-source approach and E within the voltage-source approach remain constant. Hence,
in order to study the influence of conductivity inhomogeneities on the ionospheric potential, one should use
the formula (8) within the current-source approach and the formula (6) within the voltage-source approach.
Obviously, a similar conclusion can be drawn for more general multi-column models than the one shown in
Fig. 1.

Although the current-source and voltage-source descriptions of generators are very similar for equiv-
alent circuit models, this is not the case for the general spherical model. Indeed, within the current-source
approach it suffices to specify the external current density distribution Jext(r, θ, ψ) in order to find the
potential distribution (and the ionospheric potential), and the corresponding problem (2)–(4) is well-posed.
On the other hand, there is no natural way to represent a real distributed thunderstorm in a continuous
medium as a voltage source, except for thunderstorms of simple geometry and internal structure. Since
three-dimensional spherical models of the GEC are more realistic than simple multi-column models, this is
another critical advantage of the current-source description of generators.†

The next section is dedicated to the analysis of certain model problems regarding the effect of large-
scale conductivity inhomogeneities in the atmosphere on the ionospheric potential. The current-source
approach is used throughout this section, since it is more natural and convenient for our spherical model.

INFLUENCE OF LARGE-SCALE CONDUCTIVITY INHOMOGENEITIES ON THE IONO-
SPHERIC POTENTIAL WITHIN THE CURRENT-SOURCE APPROACH

Influence of the conductivity reduction inside thunderclouds

It is widely recognised that the conductivity inside thunderclouds is lower than that of the surrounding
air [e.g., Zhou and Tinsley, 2010]. This hypothesis is reinforced by both direct measurements and theoretical
considerations, the latter attributing the effect to the attachment of ions to hydrometeors.

A very important question is how the conductivity reduction inside thunderclouds affects the iono-
spheric potential Vi. It is convenient to study the contributions to Vi from different thunderclouds rather
than Vi itself. Strictly speaking, when we calculate the contribution δVi to the ionospheric potential from a
single thundercloud, we should account for all conductivity inhomogeneities caused by other thunderclouds,
inasmuch as otherwise the superposition principle would not hold. However, as long as thunderclouds cover
only a small portion of the Earth’s surface and different thunderclouds are located rather far from each other,
one can neglect those inhomogeneities and only allow for the conductivity reduction inside the thundercloud
in question.

In order to estimate the effect of the conductivity reduction inside a single thundercloud on its con-
tribution to the ionospheric potential, let us consider a model thundercloud occupying the region (in the
spherical shell atmosphere)

{(r, θ, ψ) : r1 ≤ r ≤ r2, θ ≤ ξ}, (9)

where rmin < r1 < r2 < rmax (see Fig. 2).
†Strictly speaking, in order to allow for different mechanisms of the charge separation in thunderclouds, we must take into

consideration that Jext may depend on E; however, this matter is beyond the scope of this paper.
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Figure 2: The geometry of a model thundercloud.

Let us first employ the more accurate spherical
model. We suppose that the external current density
distribution corresponding to the thundercloud (9) is
of the form

Jext
r (r, θ, ψ) =

{
J0, r1 ≤ r ≤ r2, θ ≤ ξ,
0, otherwise,

Jext
θ, ψ(r, θ, ψ) = 0 for all (r, θ, ψ),

and we assume that the conductivity distribution is of
the form

σ(r, θ, ψ) =

{
X · σ0(r), r1 ≤ r ≤ r2, θ ≤ ξ,
σ0(r), otherwise,

where

σ0(r) = σ0 exp

(
r − rmin

H

)
, (10)

H is a scale height and the parameter X ≤ 1 serves
as the measure of the conductivity reduction inside the thundercloud.

In Fig. 3 the solid line shows the dependence of the ionospherical potential on the parameter X , as
obtained from the numerical solution of the equations (2)–(4) with σ(r, θ, ψ) and Jext(r, θ, ψ) described
above by means of the Galerkin method. We observe that the more the conductivity inside thundercloud is
reduced, the larger is its contribution to the ionospheric potential δVi. This trend can be explained using the
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Figure 3: The contribution from a single thundercloud to the
ionospheric potential, as according to numerical modelling (the
solid line) and the formula (19) (the dashed line). The param-
eters are as follows: rmin = 6370 km, rmax = rmin + 70 km,
r1 = rmin + 5 km, r2 = rmin + 10 km, ξ = π/4000 (which cor-
responds to the thundercloud diameter of approximately 10 km),
J0 = 3 · 10−9 A m−2, σ−1

0 = 3 · 1013 Ω m and H = 6 km.

corresponding simple two-column model.
Let us consider the equivalent circuit

model shown in Fig. 1a. To establish the cor-
respondence between this model and the two-
column approximation of the spherical model
considered above, we choose the following pa-
rameters‡:

R1 =
1

γS

∫ r1

rmin

dr

σ0(r)
, (11)

R2 =
1

γSX

∫ r2

r1

dr

σ0(r)
, (12)

R3 =
1

γS

∫ rmax

r2

dr

σ0(r)
, (13)

R4 =
1

(1− γ)S

∫ r1

rmin

dr

σ0(r)
, (14)

R5 =
1

(1− γ)S

∫ r2

r1

dr

σ0(r)
, (15)

R6 =
1

(1− γ)S

∫ rmax

r2

dr

σ0(r)
, (16)

Iext = γSJ0, (17)

‡We use the relation rmax − rmin � rmin, rmax.
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where S stands for the Earth’s surface and γ = (1− cos ξ) /2 denotes the portion of the Earth’s surface
covered by the thundercloud (9). Since we use the current-source approach, the ionospheric potential is
described by the formula (8), which can be written in the form

δVi =
Iext

1

R4 +R5 +R6
+

(
1 +

R1 +R3

R4 +R5 +R6

)
1

R2

. (18)

Since R2 ∝ 1/X , this means that the ionospheric potential is a fractional linear function of X . Substituting
the expressions for the total external current Iext and the resistances R1, R2, . . . , R6 in terms of σ0(r), J0
and X into (18), we arrive at the formula

δVi =
γδV0

(1− γ)K + (1− (1− γ)K)X
, (19)

where

δV0 = J0

∫ r2

r1

dr

σ0(r)
, K =

∫ r2

r1

dr

σ0(r)

/∫ rmax

rmin

dr

σ0(r)
.

The ionospheric potential given by (19) is shown by the dashed line in Fig. 3.
By comparing the two curves in Fig. 3, we observe that their shapes are similar; furthermore, the two

functions yield the same δVi at X = 1, which is because in this case the formula (19) is exact, as was shown
by Kalinin et al. [2014]. However, the more is the conductivity reduction, the greater is its relative error.
This is another illustration of the fact that although the equivalent circuit models yield qualitatively correct
results, they are not useful for quantitative analysis.

It is easy to conclude from Fig. 3 that the ionospheric potential substantially depends on the con-
ductivity reduction in thunderclouds. Therefore it is extremely important to allow for this phenomenon in
quantitative studies of atmospheric electricity. For example, if we know the contribution δVi to the iono-
spheric potential from a typical thundercloud, we can estimate the total number of thunderclouds by dividing
the total ionospheric potential Vi by δVi; assuming that the parameters of a typical thundercloud are the same
as listed in Fig. 3 caption and the total ionospheric potential is equal to 240 kV, we obtain that the number
of thunderstorms is about 11700 if the conductivity reduction is not taken into account and about 4900 if a
tenfold reduction is assumed. However, this number substantially depends on the values of the external cur-
rent density inside thunderclouds J0 and the air conductivity at the Earth’s surface σ0, which in the example
above were taken equal to 3 · 10−9 A m−2 and 1/3 · 10−13 Ω−1 m−1 respectively. Actually the ratio J0/σ0
may be greater, and in consequence the number of thunderclouds in the atmosphere may be substantially
smaller.

Influence of conductivity inhomogeneities outside thunderclouds

Certain trends in the variation of the ionospheric potential are often attributed to various natural
phenomena (e.g., ionising radiation due to solar flares) and anthropogenic factors (e.g., nuclear radiation
caused by weapons testing and accidents in power plants), and conductivity variations are usually regarded
as one of the possible mechanisms for the effect that these factors have on the GEC [e.g., Markson, 2007].
Both numerical solution of the spherical model equations and qualitative estimation by means of equivalent
circuit models show that in most cases conductivity inhomogeneities inside thunderclouds lead to a much
more significant change in the ionospheric potential than conductivity inhomogeneities of the same order
outside thunderclouds.

In order to illustrate this idea, let us consider a model problem where all thunderclouds are situated
near the equator and the conductivity is reduced inside them and increased in the axisymmetric region
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situated above the cloud level in the Northern Hemisphere (see Fig. 4). More precisely, we suppose that
thunderclouds occupy the entire region

{(r, θ, ψ) : r1 ≤ r ≤ r2, ξ ≤ θ ≤ π − ξ},

so the external current density distrbution is of the form

Jext
r (r, θ, ψ) =

{
J0, r1 ≤ r ≤ r2, ξ ≤ θ ≤ π − ξ,
0, otherwise,

Jext
θ, ψ(r, θ, ψ) = 0 for all (r, θ, ψ),

and we assume that the conductivity distribution is of the form

σ(r, θ, ψ) =


X · σ0(r), r1 ≤ r ≤ r2, ξ ≤ θ ≤ π − ξ,
Y · σ0(r), r3 ≤ r ≤ r4, θ ≤ χ,
σ0(r), otherwise,

0

rmin

r1

r2

r3

r4

rmax

χ ξ

ξ

Figure 4: Geometry of the model problem.

where σ0(r) is described by (10) and rmin < r1 <
r2 < r3 < r4 < rmax. Here the parameter X again
means the degree of the conductivity reduction inside
thunderclouds and the parameter Y measures the con-
ductivity increase in the region

{(r, θ, ψ) : r3 ≤ r ≤ r4, θ ≤ χ} (20)

(the hatched region in Fig. 4). Our choice of such
a distribution of thunderclouds is motivated by the
fact that in the real atmosphere most thunderstorms
are located near the equator, and conductivity pertur-
bations in the region (20) are supposed to represent
typical conductivity inhomogeneities caused by solar
flares and precipitation of energetic particles.

It is crucial to note that here we have replaced
the real distribution of thunderclouds with a single
continuous region {(r, θ, ψ) : r1 ≤ r ≤ r2, ξ ≤ θ ≤
π−ξ}. As it was stated in the previous section, even if the total external current and the total area overcast by
thunderclouds are chosen to match the real values, there still may be a considerable difference between the
potential distributions produced by a number of small separate thunderclouds and a ‘single thundercloud’
region as described above, since in the latter case all the ‘fringe’ effects concerning the currents which
return to the Earth’s surface through the middle atmosphere without reaching the ionosphere are neglected,
whereas these effects must be taken into account in order to detemine the potential distribution quantitatively.
However, such an approximation is still useful for qualitative analysis, while the axisymmetric geometry
substantially simplifies and speeds up numerical computations.

In Fig. 5 the dependence of the ionospheric potential on the parameters X and Y , obtained from the
numerical solution of (2)–(4), is shown for three different values of χ. The assumption that the conductivity
is reduced inside thunderclouds and increased inside the region (20) is equivalent to the conditions X ≤
1, Y ≥ 1. We observe that for such X and Y the ionospheric potential Vi increases substantially with
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Figure 5: The ionospheric potential, obtained from numer-
ical calculations, for different values of χ. The parameters
are as follows: rmin = 6370 km, rmax = rmin + 70 km,
r1 = rmin +5 km, r2 = rmin +10 km, r3 = rmin +12 km,
r4 = rmin + 25 km, ξ = 4π/9 (which corresponds to
the thundercloud region between 10◦N and 10◦S), J0 =
9 · 10−12 A m−2, σ−1

0 = 3 · 1013 Ω m and H = 6 km.

increasing X , but does not change much with increasing Y , whatever the value of χ may be. Note that in
case X � 1 the ionospheric potential approaches zero, which is not surprising, since in this case almost
all the current Iext in the network of Fig. 1a does not reach ionosphere and flows back through R2. In case
X � 1 and Y � 1 the dependence Vi(X, Y ) turns out to be very complicated (these values of X and Y
are beyond the range of Fig. 5); however, this case does not correspond to any real physical problem.

Since in the model problem discussed above thunderclouds are combined into a single large region,
the equivalent circuit approximation describes this problem with high precision. Using this approximation,
one can derive an explicit formula expressing the ionospheric potential Vi in terms of X and Y , and it turns
out that its relative error is very small for all values ofX and Y . However, this formula is rather cumbersome
and not very useful.

COMPARISON OF THE TWO APPROACHES TO THE DESCRIPTION OF THUNDERSTORM
GENERATORS

As it was already mentioned, one of the most critical distinctions between the current-source and
voltage-source approaches is that the former can be easily integrated into continuous three-dimensional
spherical models, whereas there is no natural way to do so for the latter. On the other hand, this distinction
does not hold for the corresponding equivalent circuit approximations, both of which are equally natural and
useful. Therefore, since the equivalent circuit approach in most cases yields qualitatively correct results,
it is convenient to employ this approach in order to clarify the difference between the two methods of the
description of generators.
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Let us consider a model problem corresponding to the circuit shown in Fig. 1. We suppose first that
the conductivity is described by the function σ0(r), as defined in (10), except that inside thunderstorms this
function is multiplied by the factor X . Within the current-source approach (Fig. 1a) we also suppose that
the external current density (which is assumed to be purely radial) is equal to J0 inside thunderstorms and
equal to zero outside them. It is easy to see that in this case the resistances R1, R2, . . . , R6 and the total
external current Iext in thunderstorms are described by (11)–(17), γ being the portion of the Earth’s surface
overcast by thunderclouds, and hence the ionospheric potential can be calculated using the formula (19) (in
which δVi should be replaced with Vi). Taking rmin = 6370 km, rmax = rmin + 70 km, r1 = rmin + 5 km,
r2 = rmin + 10 km, J0 = 3 · 10−9 A m−2, σ−10 = 3 · 1013 Ω m, H = 6 km and X = 0.1, and requiring that
Vi = 240 kV, we find that γ = 0.17%. By comparing (6) and (8) we obtain that the potential difference E
across thunderstorms is equal to 1.04 · 108 V.

Suppose now that the conductivity doubles over the upper boundary of thunderclouds r = r2. This
means that R3 and R6 halve and all other resistances remain unchanged. Then within the current-source
approach we keep Iext constant and by (8) find that ∆Vi/Vi = −6.7%, and within the voltage-source
approach we keep E constant and by (6) find that ∆Vi/Vi = 3.5% (here ∆Vi denotes the variation of Vi due
to the doubling of conductivity). In other words, the ionospheric potential increases if thunderstorms are
treated as voltage sources and decreases if they are regarded as current sources. Such a critical discrepancy
reinforces the idea that the choice of the description of generators of the GEC is extremely important.

Using the voltage-source approach and a two-column model of the GEC, Markson [1978] estimated
that a doubling of conductivity in the upper atmosphere leads to a 40% increase in the ionospheric poten-
tial. Furthermore, a more accurate estimation shows that actually the ionospheric potential in the situation
analysed by Markson increases by 70%. The substantial difference between these findings and those of the
preceding paragraph is explained by the fact that Markson assumed a 20-fold increase in conductivity below
thunderclouds, and thus his analysis implies that R3 is about one order of magnitude greater than R1 (in
terms of Fig. 1b), whereas without this assumption R3 is several times less than R1, and the ratio R1/R3

turns out to be critical for the estimation of the ionospheric potential within the voltage-source approach.§

Note that if X were equal to 1—that is to say, if the conductivity were not reduced inside
thunderclouds,—then within the current-source approach the ionospheric potential would not change due
to a doubling of conductivity in the upper atmosphere. Indeed, the formula (8) can be written as

Vi =
IextR2

1 +
R1 +R2 +R3

R4 +R5 +R6

,

and from X = 1 it follows that R1/R4 = R2/R5 = R3/R6; therefore Vi does not change if we replace
R3 with R3/2 and R6 with R6/2. This is an illustration of the general fact that a substantial increase in
the ionospheric potential due to large-scale conductivity inhomogeneities in the atmosphere is impossible, if
conductivity inhomogeneities in thunderstorm regions and fair-weather regions are distributed ‘similarly’.

CONCLUSIONS

Although both the current-source and voltage-source approaches to the description of thunderstorms
are convenient for simple equivalent circuit models, yet for more realistic continuous three-dimensional
models, the former approach is more natural and useful. We have shown that the choice of the description of
generators is a critical issue for modelling the GEC, since different approaches lead to substantially different

§Note, however, that within the current-source approach the ratio R1/R3 is not so important, if the conductivity reduction inside
thunderstorms is taken into account, for in this case R2 is much greater than both R1 and R3.
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results. Within the current-source approach it is also important to allow for conductivity inhomogeneities
inside thunderclouds, for they significantly affect the ionospheric potential. We have also shown that equiv-
alent circuit models of the GEC (or, in other words, simple multi-column models) which have been widely
used until now are rather simplistic and unsuitable for quantitative estimations. All these considerations
must be taken into account in models of the GEC.
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